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1 Introduction

In the last several decades, empirical research has documented a vast number of anomalies

earning significant abnormal returns. Many anomalies are found to be robust and persistent

both statistically and economically (see, e.g., Chen, 2021; Chen and Zimmermann, 2022).

To the extent that many anomalies are driven by mispricing (Chu, Hirshleifer, and Ma,

2020; Han, Lu, Xu, and Zhou, 2024), a fundamental question arises: why don’t investors,

equipped with extensive knowledge of these well-established anomalies, exploit them more

aggressively, thereby eliminating the anomalies?

We posit that uncertainty surrounding risk loading, or beta uncertainty, serves as a

significant barrier to arbitrage, precluding investors from fully exploiting anomalies. It is

widely held that arbitrage barriers, such as idiosyncratic risk, constrain arbitrageur capacity

to correct mispricing in equity markets (for instance, Shleifer and Vishny, 1997; Pontiff,

2006; Gromb and Vayanos, 2010; McLean, 2010; Lam and Wei, 2011; Stambaugh, Yu, and

Yuan, 2015; Cao and Han, 2016). However, in the case of long-short anomaly portfolios,

idiosyncratic volatility tends to be small due to the inclusion of hundreds of stocks on both

long and short sides.

Nevertheless, we find a notable degree of remaining uncertainty, resulting from the sys-

tematic risk of the strategy – the beta uncertainty associated with the anomaly. This un-

certainty surrounding the anomaly beta poses challenges for investors in devising effective

trading strategies. The majority of long-short anomaly portfolios are not market neutral,

exposing investors to market risk. Transporting alpha – avoiding market exposure in the

process of exploiting anomalies – only works to the extent that the expected market exposure

is eliminated. With uncertain risk loadings, return realizations retain an unpredictable net

exposure in positive or negative direction. Neither is the uncertainty of loadings necessarily

reduced in diversified anomaly portfolios, even though this may be the case for idiosyncratic

risk.

To evaluate the barriers to arbitrage as an explanation for anomaly persistence, we need
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to account for both beta uncertainty and idiosyncratic risk. However, it is difficult in practice

to separate beta uncertainty from idiosyncratic volatility. The reason is that the standard

error of beta in a time series regression of portfolio returns on market returns, as a measure

of beta uncertainty, is per definition equal to the idiosyncratic standard deviation of the

portfolio return multiplied by a term that does not vary cross-sectionally. Additionally, to

obtain a comprehensive gauge of beta uncertainty it is necessary to account not only for

parameter estimation risk but also for time variation in betas.

A modeling approach that explicitly accounts for the dynamics of beta and idiosyncratic

volatility, enables us to obtain a suitable measure of beta uncertainty and to disentangle beta

uncertainty from idiosyncratic risk. We introduce a modified market model with stochastic

volatility and stochastic beta, in which beta uncertainty and idiosyncratic risk are driven by

separate random processes. To handle the model complexity, we employ a Bayesian Markov

Chain Monte Carlo (MCMC) method and a nonlinear particle filtering process in estimating

both the conditional volatility of beta (BV OL), our proxy for beta uncertainty, and the

conditional idiosyncratic volatility (IV OL).

We estimate the model for each of the 207 anomaly long-short spread portfolios provided

by Chen and Zimmermann (2022). We find that beta varies considerably across anomalies,

but that most anomalies have significant non-zero beta, ranging from −0.735 to 1.211. In

addition, BV OL is an order of magnitude higher than IV OL, which hints at the relative

importance of their respective roles as arbitrage barriers and the corresponding effects on

anomaly returns.

If beta uncertainty acts as an arbitrage barrier, anomalies characterized by high beta

uncertainty are expected to exhibit elevated future returns. We sort anomaly portfolios into

ten deciles based on their beta uncertainty levels (BV OL), and find that the average returns

of these portfolios increase substantially across the deciles. The return differential between

the top and bottom deciles amounts to 0.689 percent per month with a corresponding t-

statistic of 6.72. Even after adjusting for systematic risk with the Fama-French five-factor
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model, the differential remains similarly high at 0.695 percent per month with a t-statistic

of 4.96.

When we examine the long legs and short legs of the anomalies separately, both are

significantly affected by beta uncertainty. We observe that the short legs contribute more

than twice as much to the return disparity from differences in beta uncertainty as the long

legs, which is consistent with beta uncertainty measured by BV OL serving as an effective

arbitrage barrier complementing the shortselling costs.1

Separating the data by sentiment state allows a close look at the impact of beta un-

certainty when mispricing varies, and may shed a new light on how mispricing reacts to

arbitrage. We find that the BV OL premium is robust across the sentiment regimes: 0.756

percent (t-stat of 4.18) per month for High Sentiment and 0.647 percent (t-stat of 5.27) for

Low Sentiment. In contrast, as sentiment increases from low to high, we find that, for the

short legs, the return differential between the top and the bottom BV OL deciles almost

doubles from −0.374 to −0.613 percent per month, whereas, for the long legs, the differ-

ential halves from 0.274 to 0.142 percent per month. These offsetting results explain why

the BV OL premium is robust across the sentiment states and are consistent with Stam-

baugh, Yu, and Yuan (2012) – high sentiment states are characterized by the prevalence of

overpricing, while underpricing is more prevalent in low sentiment states.

The observation that anomaly returns are predictable from beta uncertainty, viewed as

a plausible arbitrage barrier, coupled with how its impact varies with mispricing levels,

suggests that a new variable, BV OL confirms the familiar, but still contentious, market per-

spective: anomaly returns exist because traders with particular biases cause price deviations

from fundamentals that are imperfectly offset by rational traders. BV OL, as an unexplored

1The literature has previously documented shortselling costs as an impediment to arbitrage (e.g., Jones
and Lamont, 2002; Nagel, 2005; Duan, Hu, and McLean, 2010; Engelberg, McLean, and Pontiff, 2018;
Muravyev, Pearson, and Pollet, 2022). Our results here accord with the view of Chu et al. (2020) and
others that the short side is more sensitive to arbitrage barriers that make it riskier and costlier to sell
short. Chen, Han, and Pan (2021) identify a further interesting barrier to direct arbitrage, arguing that
arbitrageurs (hedge funds) do better in exploiting mispricing by forecasting changes in sentiment. Direct
arbitrage exposes the investors to sentiment risk (primarily because of shorting overpriced stocks), making
market timing based on sentiment a more profitable alternative.
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alternative arbitrage barrier, provides a novel lens through which to test this view. It is chal-

lenging to conceive how traditional risk premia could generate a similar pattern of empirical

results.

To control for the impact of IV OL, we run horse races between BV OL and IV OL

in Fama-MacBeth cross-sectional regressions of future returns. Notably, both BV OL and

IV OL exhibit positive and highly significant coefficients, across the entire sample period as

well as during periods characterized by high or low sentiment. To further disentangle the

individual impacts on future returns, we orthogonalize BV OL from IV OL by regressing

it on IV OL and squared IV OL, and use the residuals in the Fama-MacBeth regressions.

The orthogonalized BV OL is still positive and highly significant. When we orthogonalize

IV OL with respect to BV OL, comparable results are obtained. Upon standardizing both

variables, we observe that BV OL exerts a more pronounced influence on future returns

compared to IV OL. Similar results are observed when we double-sort the anomalies based

on both variables – the spreads between the top and bottom deciles are consistently larger

and more significant for BV OL than for IV OL.

We also investigate anomaly performance over longer horizons. McLean and Pontiff

(2016) document a decline in anomalies out of sample and note that anomalies exhibiting

higher in-sample returns tend to decay faster. They argue that high past returns attract

more capital from arbitrageurs and prompt heightened arbitrage activities. Building on this,

we propose a positive interaction between beta uncertainty and the arbitrage opportunities

captured by past returns. We anticipate that beta uncertainty attenuates the diminishing

effect of high past returns on future anomaly returns because the higher risk of arbitrage

due to beta uncertainty reduces the attractiveness of arbitrage invoked by the high past

returns. Our empirical findings support this hypothesis. While past cumulative returns are

significantly negatively related to future cumulative returns over various horizons, the effect

of the interaction between BV OL and past returns on future cumulative returns is always

significant and positive. In contrast, the effect of the interaction between IV OL and past
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returns is consistently negative, though not always significant.

We extend the analysis to the individual firm level instead of anomaly portfolios to

reconcile our results with previous literature and to provide further evidence and validation.

We expect that higher beta uncertainty increases anomaly strength from a micro (firm level)

perspective. In Fama-MacBeth regressions we interact beta uncertainty with the mispricing

score (MPS) from Stambaugh et al. (2015) but subtracting 50 so thatMPS > (<)0 indicates

overpricing (underpricing). We examine overpriced stocks and underpriced stocks separately,

and as expected, find that the interaction term has a significantly negative coefficient, the

same sign as the coefficient of MPS in the sample of overpriced stocks, but not in the

sample of underpriced stocks, consistent with the hypothesis that beta uncertainty imposes

an arbitrage barrier aggravating the mispricing in already overpriced stocks. In contrast, for

IV OL we observe no significant interaction with MPS, either for overpriced or underpriced

stocks.

Further, we aim to provide direct evidence that beta uncertainty reduces investor arbi-

trage activities. In the first test, we follow Hanson and Sunderam (2014) to use firm level

monthly short-selling interest as a proxy for the positions of arbitrageurs. In the regressions

of short interest on BV OL and other control variables, we find that BV OL indeed has a

significantly negative coefficient. However, to our surprise, IV OL has a significantly posi-

tive coefficient.2 In the second test, we employ an alternative measure of arbitrage activity

introduced by Lou and Polk (2022), co-momentum. It confirms the results based on short

interest that (average) BV OL negatively affects arbitrage activity, as well as confirming the

unexpected result that (average) IV OL positively affects arbitrage activity.

Previous literature on beta uncertainty does not relate beta uncertainty to arbitrage at-

tenuation and exclusively focuses on individual stocks. Armstrong, Banerjee, and Corona

(2013) theoretically show that a stock’s expected return is negatively related to beta un-

2Idiosyncratic volatility is a multifaceted variable. We suspect that the heightened short-selling activities
for high IV OL stocks could be related to the IV OL puzzle first documented by Ang, Hodrick, Xing, and
Zhang (2006). Alternatively, in the Miller (1977) perspective, high IV OL stocks are stocks with more diverse
opinions, for which the optimistic views are expressed more easily, which attracts short-seller arbitrage.
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certainty because the stock price is a convex function of its beta, and provide supporting

empirical evidence using the standard error of the beta estimate as the measure of beta

uncertainty. Using different beta uncertainty measures, Hollstein, Prokopczuk, and Wese

Simen (2020) similarly find that stocks of higher estimated beta uncertainty significantly

underperform those stocks of lower beta uncertainty.

Our paper aligns with the essence of Barahona, Driessen, and Frehen (2021) who argue

that factor loading uncertainty reduces arbitrage demand, emphasizing ambiguity aversion.

The ambiguity as to the factor loading forecast reduces arbitrageur demand. Our paper

is also related to a larger literature on parameter uncertainty, such as Da, Nagel, and Xiu

(2023), Lassance, Mart́ın-Utrera, and Simaan (2024), DeMiguel, Mart́ın-Utrera, and Nogales

(2015), Bidarkota, Dupoyet, and McCulloch (2009), Garlappi, Uppal, and Wang (2007),

Kan and Zhou (2007), and Lewellen and Shanken (2002). Papers in this literature study

the implications of parameter uncertainty and investor learning on asset prices and optimal

portfolios choice.

Most relevant, in the context of arbitrage impact on anomaly returns, is Da et al. (2023)

who consider statistical limits on arbitrage in an APT context with unknown alphas, showing

that measured anomaly returns depend on the extent of alpha uncertainty, although these

anomaly returns are not feasible for investors in real time without perfect information about

the underlying alphas. Lassance and Martin-Utrera (2024) find that the degradation of a

parameter signal out of sample decreases the benefit of using arbitrage signals, to the point

that incorporating an arbitrage element in an optimal portfolio may only be beneficial during

high sentiment periods. Barroso and Detzel (2021) argue in the context of volatility-managed

portfolios that arbitrage is too costly, and may be profitable only if transaction costs are

mitigated by using stocks that are easy to arbitrage, counter to the prevalent view that

arbitrage profitability is concentrated on the stocks that are the hardest to arbitrage.

Our results support the arbitrage hurdle channel versus other channels for the importance

of beta uncertainty proposed by Armstrong et al. (2013), Hollstein et al. (2020), and Boloor-
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foroosh, Christoffersen, Fournier, and Gouriéroux (2020). Most importantly, the proposed

role of beta uncertainty presents a new empirical angle that may be exploited to provide

independent evidence for a particular theory of anomalies. As proposed by DeLong, Shleifer,

Summers, and Waldmann (1990), Shleifer and Vishny (1997), Stambaugh et al. (2015), and

others, stock prices are affected by non-fundamentals traders, whereas arbitrage by funda-

mentals traders restores prices partway back to fundamentals. Arbitrage barriers preclude

the full reversion to fundamentals, thus leaving predictable anomaly returns. Our identifica-

tion of beta uncertainty as a previously unexplored arbitrage barrier allows a different look

at the factors affecting anomalies, yielding supplemental support for the view that mispricing

generates persistent anomalies when arbitrage is impaired.

In contrast to the previous literature, which estimates BV OL and IV OL separately, thus

ignoring their high correlation and the resulting compounding effect, our paper is the first

to recognize the intertwined nature of the two variables, and formally model and estimate

them simultaneously. In our stochastic model, BV OL and IV OL are identified from distinct

stochastic processes, breaking the tight link between them. Because IV OL has been found

to proxy for many risks and has been linked to numerous firm characteristics, it may be

worthwhile to reassess the various effects of IV OL with estimates such as ours.

The remainder of the paper is organized as follows. Section 2 presents the theoretical

argument for why beta uncertainty operates as an important arbitrage barrier. Section 3

discusses our stochastic market model and its estimation and prediction. Section 4 discusses

the data used. Section 5 presents the main empirical results demonstrating the predictability

stemming from beta uncertainty. Section 6 disentangles the effects of BV OL and IV OL.

Section 7 discusses the influence of BV OL on the persistence of anomalies. Section 8 presents

further evidence from firm-level analysis and section 9 concludes.
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2 Beta uncertainty as a barrier to arbitrage

To exploit market anomalies, active investors (“arbitrageurs”) consider investment in

anomaly positions in the context of their total asset portfolio. The marginal contribution of

anomaly holdings is most transparent when converted to a market neutral position, enabling

“alpha transport”. When the market beta (in a more general context, loadings on any

set of systematic risk factors) of such anomaly position is uncertain, the arbitrage position

necessarily incurs an unknown degree of systematic risk, potentially discouraging arbitrage.

We assess the issue in the context of the basic market model, the Treynor-Black formu-

lation, augmented by relaxing the assumption that market betas are known exactly, and we

also introduce stochastic volatilities into the model. The modified market model, presented

in terms of excess returns, is

rjt = αj + βjtrmt + σjtejt.

rmt = µm + σmtemt, (1)

Here rjt is the monthly excess return of asset j at month t, with abnormal return αj,

stochastic market beta, βjt and stochastic idiosyncratic volatility σjt. The monthly market

excess return at month t is rmt with constant mean return µm and stochastic volatility,

σmt. Details of the model for estimation purposes, considering in particular the dynamics

of the uncertainty and stochastic variation, are in the next section. The specific dynamics

of stochastic volatility helps distinguish and identify beta uncertainty from idiosyncratic

variance. What is relevant conceptually, for now, is that βjt is stochastic, and all the random

processes are indpendent.

Arbitrageurs invest in an anomaly by taking a zero-investment position in a set of assets

with non-zero alpha, and then transport the alphas by creating expected market-neutral

positions,

rat = αa + (βat − β̂at−1)rmt + σateat, (2)
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where β̂at−1 = Et−1βat, the conditional expectation of the position’s market beta used to

attain as close as possible a market-neutral position. Overall, we assume that an arbitrageur

invests in anomaly a with weight w and with total investment in the market portfolio (in-

cluding the market investment needed to eliminate expected market sensitivity of the active

portfolio) normalized to one.

The total return of the strategy is

rt = wt−1rat + rmt (3)

Both the active anomaly position and the passive market position are zero investment so

there is no need to further normalize the portfolio weights. The squared Sharpe ratio,

SR2
t−1 =

Et−1(rt)2

Vart−1(rt)
, generated by the strategy is

SR2
t−1 =

(wt−1αa + µm)
2

w2
t−1Vart−1(rat) + Vart−1(rmt)

, (4)

where Vart−1 denotes conditional variance. Note that the covariance between rat and rmt

that would show up in the denominator is by design equal to zero. Arbitrageurs choose

the weight on the anomaly position to maximize the (squared) portfolio Sharpe Ratio. In

equation (4), Vart−1(rat) = σ2
at−1 + Vart−1[(βat − β̂at−1)rmt], and the multiplicative variance

in the last term equal to Vart−1[(βat − βat−1)rmt] = σ2
βat−1(σ

2
mt−1 + µ2

m), given that βat and

rmt are independent.3 The optimal weight from the first-order condition then becomes

w∗
t−1 =

αa/µm

σ2
βat−1(1 + SR2

mt−1) + (σ2
at−1/σ

2
mt−1)

. (5)

From the solution in equation (5), the optimal weight, w∗
t−1, decreases in the conditional

volatility of beta, σβat−1 : the higher the beta uncertainty, the smaller the weight arbitrageurs

put on the active anomaly portfolio. Higher beta uncertainty induces arbitrageurs to allocate

3For independent random variables, x and y, we employ Var(xy) = Var(x)Var(y) + Var(x)(Ey)2 +
Var(y)(Ex)2.
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less investment to the anomaly. Arbitrage is slowed by high beta uncertainty. The conditional

idiosyncratic volatility σ2
at−1 is negatively related to the optimal active investment weight in

equation (5), ∂w∗
t−1/∂σ

2
at−1 < 0, implying that, in addition to beta uncertainty, idiosyncratic

risk slows down arbitrage as well, consistent with the common belief that idiosyncratic

volatility is an arbitrage risk.

To contrast the impact of beta uncertainty and idiosyncratic uncertainty, it is useful to

bear in mind the positions sit−1 in the underlying individual zero-investment asset positions

i that together generate the anomaly return rat =
∑n

i=1 sit−1rit. Assume for simplicity the

special case that, for anomaly a, each of the n separate positions have identical alphas

α, identical idiosyncratic risk σe without correlation, identical beta uncertainty σβ, and

identical correlation of beta risk among the positions ρ. All are also constant over time.

These assumptions represent the presumption that correlation in idiosyncratic risk among

the asset positions is negligible due to diversification and that beta risk among the asset

positions is more highly correlated as, for instance, some non-market characteristics have a

common component. The assumptions also imply that optimal arbitrage investment in each

position si will be identical and normalized to 1/n, which lines up with the data in which

anomaly returns are constructed as equal-weighted averages of the asset position returns.

Under these simplifying assumption we have that

σ2
at−1 = Var

(
n∑

j=1

ejt/n

)
=

σ2
e

n
,

σ2
βat−1 = Var

(
n∑

j=1

βjt/n

)
= [1 + (n− 1)ρ]

σ2
β

n

(6)

First assume that σ2
β = 0. Without beta uncertainty, the result in Pontiff (2006) holds,

substituting the appropriate values from equation (6) into equation (5). The price pressure

to neutralize anomalies resulting from arbitrage demand for specific assets does not depend

on how many asset positions can be utilized to exploit the anomaly: the arbitrage investment

w∗
t−1 × sit−1 in asset position i does not change with n the number of exploitable assets.
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If we now allow for beta uncertainty, σ2
β > 0, but ignore correlation of beta uncertainty,

this uncertainty is magnified by 1+SR2
mt−1 in equation (5). The relevance of the conditional

market Sharpe ratio results from the multiplicative interaction of beta uncertainty with the

market factor uncertainty.

If we also admit positive correlation among asset betas, ρ > 0, this further increases the

importance of beta uncertainty in mitigating arbitrage, in absolute terms as well as relative

to the idiosyncratic risk. In the limit, as the number of exploitable asset positions becomes

infinite, the impact on individual asset positions goes to zero. Arbitrage then has no impact

on individual assets, even though, in sum, the total weight of the arbitrage investment∑n
i=1w

∗
t−1 × sit−1 = w∗

t−1 directed to anomaly a remains strictly positive, converging to

α/µm

ρ(1+SR2
m)σ2

β
. As we consider empirically both the overall anomaly positions and the individual

asset positions, these distinctions are noteworthy.

3 Model of anomaly returns

3.1 Motivation

The market model described in the previous section will be fully specified for estimation

purposes. The dynamics of factor sensitivities, along with their volatilities and the volatilities

of the idiosyncratic and market shocks, are explicitly defined to allow beta uncertainty

and idiosyncratic volatility to be estimated from distinct processes. While this approach

is more complex than conventional methods that estimate beta uncertainty (BV OL) and

idiosyncratic risk (IV OL) separately, it is essential for capturing the intertwined nature of

these two variables.

Consider the common estimates of BV OL and IV OL obtained from the basic market

model,

rit = αi + βirmt + eit, (7)
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where rit is the monthly excess return of portfolio i for month t, rmt is the monthly market

excess return. We may conventionally estimate the coefficients using monthly returns in T -

month rolling windows (usually T = 60), rolling over one month at a time to obtain monthly

estimates of βi. The BV OL estimate is then the standard error of βi. This method for

estimating BV OL is employed by Armstrong et al. (2013). The standard error of beta, used

as the BV OL measure, equals

σ(β̂i) =
σ(êi)√∑T

t=1(rmt − r̄m)2
, (8)

We now obtain IV OL straightforwardly as the standard deviation of the residual, σ(êi) from

the same regression. It follows that BV OL is directly related to σ(êi) and, therefore, in the

cross-section is mechanically perfectly correlated with IV OL.

Probably for this reason, Armstrong et al. (2013) estimate IV OL in a different way which

is also the standard approach for estimating idiosyncratic volatility. Following Ang et al.’s

(2006)’s findings, a large literature has focused on the puzzling relation between IV OL and

future stocks returns. In this literature, idiosyncratic volatility (IV OL) is estimated from

daily returns, and the most common approach is to use one month of daily returns (see, e.g.,

Ang, Hodrick, Xing, and Zhang, 2009; Han and Lesmond, 2011; Han, Hu, and Lesmond,

2015), which is the approach that Armstrong et al. (2013) use for IV OL estimation.

Accordingly, the estimation method for IV OL is identical to our initial description, in

which it is the standard deviation of the residual, σ(êi) from the market model regression,

except that instead of using five years of monthly data, it uses one month of daily data.

To generate meaningful empirical differences between BV OL and IV OL, Armstrong et al.

(2013) mix estimation frequencies and intervals.

While it is common to estimate betas with 60 monthly data points (although 12 months

of daily data, when daily data are available, is more typical) and idiosyncratic risk from one

month of daily data, there is no fundamental reason for these frequencies. Differences in
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frequency generate differences in BVOL and IVOL that are hard to interpret and essentially

meaningless from the perspective of identifying true differences in the underlying variables.

In the case of Armstrong et al. (2013), it is not clear how serious the issue is since presumably

they use the variables as proxies for unrelated issues – BV OL as an indicator of convexity

impact and IV OL to capture all barriers to arbitrage. In our case, however, both capture

barriers to arbitrage and it is vital to distinguish them correctly.

To properly characterize investor uncertainty about market loadings, it is essential to

include the dynamic element. The conventional BV OL proxy is implicitly based on constant

betas and omits a key element of beta uncertainty. Market participants are uncertain about

factor loadings not only because of estimation risk associated with a constant parameter but

also because of time variation in the latent parameter that cannot be fully inferred from past

observations. Our model should explicitly account for this additional component of BV OL.

Omitting a key component of BV OL has implications for IV OL because BV OL and

IV OL are intertwined. Variability missed in the one may be captured by the other. To

understand this in an intuitive way, consider returns generated from a simple model (a

special case of our empirical model) with stochastic beta,

rit = αi + βitrmt + eit,

βit = βi + ηit (9)

If one incorrectly estimates a simple model with a constant beta as in equation (7), the unex-

plained variation, eit+ηitrmt, used to estimate idiosyncratic volatility, contains a component

of beta uncertainty. Therefore, when the coefficient on IV OL is significant, it could be the

beta uncertainty component that makes it so. This highlights the necessity to have mod-

els that explicitly accommodate the dynamics of these two components needed to estimate

them simultaneously. Our model presented in the following subsection provides a reasonable

design for this purpose.
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3.2 Model specification

To capture beta uncertainty and separate beta uncertainty from idiosyncratic volatility,

we provide further details to the modified market model introduced in the previous section.4

Restating first the modified market model for anomaly returns from the previous section,

rjt = αj + βjtrmt + σjtejt,

rmt = µm + σmtemt, (10)

where rjt is the monthly excess return of anomaly j at month t, with market-risk adjusted

abnormal return αj, stochastic market beta, βjt, and stochastic volatility, σjt, and denoting

rmt the monthly market excess return at month t with mean return µm and stochastic

volatility, σmt.

We now specify the dynamics of the stochastic components. The anomaly beta and the

log-variances of the anomaly return and the excess market return all follow autoregressive

AR(1) processes. Let hjt denote the log variance of the anomaly return j at time t, hjt =

ln(σ2
jt); similarly, let hmt = ln(σ2

mt), be the log variance of the market excess return at time

t. We have

βjt = ϕj0 + ϕj1(βjt−1 − ϕj0) + ϕj2ηjt,

hjt = aj0 + aj1(hjt−1 − a0j) + aj2ϵjt,

hmt = bm0 + bm1(hmt−1 − bm0) + bm2ϵmt, (11)

The error terms are assumed to be distributed as a multivariate standard normal, i.e.,N(0, I),

where I is the identity matrix. For simplicity, we assume that the market risk premium µm is

constant, which does not affect the dynamics of the anomaly return. The set of all parameters

in the model is then denoted as θ = (αj, βjt, µm, ϕj0, ϕj1, ϕj2, aj0, aj1, aj2, bm0, bm1, bm2).

4Although empirically relevant we abstract from shortselling costs and time-varying mispricing regimes
to keep the model tractable.
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Beta uncertainty has two dimensions in this model. One is associated with parameter

estimation (see, e.g., Lewellen and Shanken, 2002; Kan and Zhou, 2007). This is the uncer-

tainty discussed by Armstrong et al. (2013) in the context of individual stocks. Bayesian

models with priors naturally capture this uncertainty. The other dimension, arguably more

important, is the uncertainty associated with the dynamics of beta. We model beta as a

latent AR(1) process with a distinct random noise. An AR(1) process is simple to estimate

but general enough to capture higher order autocorrelations. A major motivation for the

model is to separate beta uncertainty from the idiosyncratic volatility of returns. The AR(1)

dynamics allows the beta to have a completely separate randomness (uncertainty).

We model idiosyncratic volatility as a stochastic process for two key reasons. First, it

accommodates time-varying volatility, a prominent feature in returns often addressed by

various GARCH models. However, GARCH models do not allow for separate randomness

in the volatility process. Therefore, the second reason is to decouple beta uncertainty from

idiosyncratic volatility. This is achieved in the model by using an AR(1) process for beta

and a log AR(1) process for idiosyncratic volatility.

3.3 Estimation

We estimate the modified market model for each anomaly with the Bayesian Markov

Chain Monte Carlo (MCMC) methods, proposed by Kim, Shephard, and Chib (1998), refined

by Chib, Nardari, and Shephard (2002), and extended by Chib, Nardari, and Shephard (2006)

and Han (2006) to higher dimensional settings and by Omori, Chib, Shephard, and Nakajima

(2007) to accommodate a leverage effect.

In general, MCMC is a simulation-based method designed to sample densities that do not

have closed forms. The method generates sample draws from the posterior distribution of

parameters by a recursive Monte Carlo sampling process: the transition kernel of a Markov

process is constructed such that its limiting invariant distribution is the posterior distribu-

tion; the Markov chain is then iterated a large number of times in a Monte Carlo simulation.
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After a burn-in period, the Markov chain converges, and the sampled draws are collected as

variates from the posterior distribution.

Stochastic volatility models are nonlinear state-space models, which tend to be difficult to

estimate. Following Chib et al. (2002), we augment the posterior distribution of parameters

to include the latent beta (βjt) and log variances (hjt and hmt), and linearize the model by

approximating the distribution of the log of a standard chi-squared random variable with

a seven-component mixture of normal distributions. Instead of estimating nonlinear state-

space models, we may now work with linear state-space models, which can be estimated

efficiently.5

3.4 Prediction

After estimation of the model, we can conditionally forecast the beta, βt+1, and idiosyn-

cratic volatility, σat+1 = eht+1/2, of the anomaly returns through the predictive distribution,

π(ht+1, βt+1|Ft, θ), where θ is fixed at the posterior mean. As the predictive distributions of

βt+1 and ht+1 are not available in closed form, we instead generate sample draws from the

predictive distribution by the method of composition as below,

π(ht+1, βt+1|Ft, θ) =

∫
π(ht+1, βt+1|ht, βt,Ft, θ)π(ht, βt|Ft, θ)dhtdβt, (12)

where π(ht+1, βt+1|ht, βt,Ft, θ) is the joint AR(1) transition distribution, and π(ht, βt|Ft, θ)

is the filtering distribution. Given the sample draws h
(i)
t and β

(i)
t from the filtering dis-

tribution, the predictive draws h
(i)
t+1 and β

(i)
t+1 are obtained by directly sampling from their

transition distributions. The filtering draws can be generated via Bayes’ theorem,

π(ht, βt|Ft, θ) ∝ f(rt|ht, βt, θ)π(ht, βt|Ft−1, θ). (13)

5For details of the estimation, see Chib et al. (2002) and the other papers cited above.
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Therefore, the predictive and filtering distributions are updated sequentially. The prior

belief about the latent beta and log variances at time t is the predictive distribution at time

t− 1. The prior is then updated to form the filtering distribution by incorporating the new

information about returns at time t. The filtering distribution in turn is used to form the

predictive distribution at time t, which is again the prior at time t + 1, and the updating

process repeats again for t+ 1.

Because the stochastic volatility model is nonlinear, the commonly used linear Kalman

filter cannot be applied; thus, we employ a nonlinear filter, the auxiliary particle filter, pro-

posed by Pitt and Shephard (1999). Given the filtering particles of ht−1 and βt−1 conditioned

on the information at time t − 1, the particle filter produces filtering particles of ht and βt

conditioned on the information at time t, by recursively applying equations (12) and (13).

Once we obtain the sample draws, h̃
(i)
t+1 and β̃

(i)
t+1 from the predictive distributions, we

can compute the beta, the conditional volatility of beta, and the idiosyncratic volatility for

the anomaly returns as follows.

β̂at+1 =
1

M

M∑
i=1

β̃
(i)
t+1,

σ̂βat+1 =

√√√√ 1

M − 1

M∑
i=1

(β̃
(i)
t+1 − β̃t+1)2,

σ̂eat+1 =
1

M

M∑
i=1

eh̃
(i)
t+1/2. (14)

In the empirical analysis we take σ̂βat+1 as our measure of beta uncertainty, BV OL and

σ̂eat+1 as our measure of idiosyncratic volatility, IV OL.

While different anomalies have different starting time, for each anomaly, we use all avail-

able observations to estimate the model recursively with expanding windows. In each esti-

mation, we generate predictive sample draws for the next five years (60 observation), and

enlarge the next estimation window by the same five years. The initial estimation window

is 240 observations plus the remainder of the total number of observation divided by the
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increment (60) so that the final forecast is at the end of the sample period. For example,

anomaly AM has a total of 858 monthly observations from July 1951 to December 2022. The

remainder of 858 to 60 is 18; thus the initial estimation window is the first 258 observations.

4 Anomaly betas and their volatilities

4.1 Data

Our anomaly data consist of monthly returns on 207 long-short anomaly portfolios, com-

piled by Chen and Zimmermann (2022) based on the methodologies in the original publica-

tions. The data is publicly available at both the monthly and daily frequencies.6 The data

range from January 1926 to December 2022, but many anomalies start at a later time (many

accounting anomalies only start from July 1951 or 1952, for instance). Additionally, we use

at least the first 20 years to estimate the model. Therefore, our anomaly sample effectively

starts from February 1948.

To show how beta uncertainty affects anomaly returns at the individual firm level, we

obtain individual stock returns and prices from the Center for Research in Security Prices

(CRSP) and firm characteristics, such as book-to-market ratios, from Compustat North

America. We include all common stock on the NYSE, AMEX, and NASDAQ. We construct

the liquidity measure (AMD) from Amihud (2002) by averaging the daily ratio of the abso-

lute stock return to the dollar trading volume within the month: AMDit = Avg
[

|Rid|
$V OLid

]
.

Finally, we estimate the beta uncertainty and idiosyncratic volatility for individual firms

following equation (10), but require an initial estimation period of 50 years, starting the ef-

fective sample in January 1976, because the much higher volatility in individual stock returns

requires a longer sample to estimate.

6The website is https://www.openassetpricing.com/data/.
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4.2 Beta distribution across 207 anomalies

Since anomaly portfolios are based on long-short zero investment strategies, it is generally

believed that these strategies should have near zero exposure to market risk (Lochistoer

and Tetlock, 2020). If so, one might assume beta uncertainty to have minimal impact.

We argue that beta uncertainty could affect trading in a significant way for two reasons:

first, the assumption of near zero exposure to market risk for an anomaly strategy may be

invalid; second, even if an anomaly strategy has near zero average exposure, it would still

be challenged by the time-varying nature of beta. In either case, beta uncertainty is likely

to play an important role.

In this subsection, we show that, even from an average perspective, market betas for

most anomalies are non-zero. We estimate the time-series average of the market beta and

its t-value for each anomaly and examine its significance. The results are shown in Panel A

of Table 1.

Of the 207 anomalies, 56 have a time-series t-statistic larger than 2 with an average

β of 0.145, and 144 have a time-series t-statistic smaller than −2 with an average β of

−0.157. Only 7 anomalies have insignificant β. The non-zero market risk exposure implies

that investors are exposed to market risk while implementing a long-short strategy if these

anomalies are exploited without additional market positions.

Even for the remaining few anomalies which do not have an average beta statistically

different from zero (an absolute t-value less than 2), investors may still be challenged by not

knowing the actual anomaly beta. The beta uncertainty may also leads to arbitrage difficulty

for these anomalies. In the next subsection, we further examine the summary statistics of

the market beta and, more importantly, the volatility of beta across the anomalies.

4.3 Summary statistics

Panel B of Table 1 presents the summary statistics of the relevant variables. These

summary statistics are estimated across the 207 anomalies from the time-series averages for
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each anomaly. The average monthly return of the anomalies is 0.453% per month, with a

median of 0.375% per month. However, some anomalies yield negative time-series average

returns as low as −0.488% per month; other anomalies yield positive time-series average

returns as high as 4.120% per month. The cross-sectional average (median) of the market

β is only −0.070 (−0.052), but there is a large variation across anomalies as indicated by a

large standard deviation of 0.219. The smallest time-series average beta for an anomaly is

−0.735, while the largest time-series average beta for an anomaly is 1.211. This is consistent

with Panel A, which shows that most anomalies have significant market exposure.

Across the anomalies, the average (median) beta volatility (BV OL) is 0.220, with a

standard deviation of similar magnitude (0.186). While some anomalies have very small

and stable BV OL, as low as 0.020, others have BV OL as high as 0.982. This supports our

argument that even for an anomaly with insignificant beta the volatility in beta can still be

sizeable.

Panel B also reports the average idiosyncratic volatility (IV OL) across the anomalies,

which is only 0.027, small in comparison to the average BV OL. The time-series average of

IV OL can be as low as 0.007 for some anomalies, and as high as 0.123 for other anomalies.

That BV OL is larger than IV OL for anomalies is to be expected because each anomaly

portfolio contains hundreds of stocks, so that much of the idiosyncratic volatility is diver-

sified away. However, just as the anomaly market beta level is small but not zero for most

anomalies, IV OL is not fully diversified away for many anomalies either. This suggests that,

for anomaly portfolios, or for arbitrageurs who trade the anomalies using similar strategies,

BV OL instead of IV OL is a more important consideration as an arbitrage barrier.7

7The diversification impact in anomaly positions for IV OL compared to BV OL can be illustrated by
considering the anomaly averages of IV OL and BV OL in relation to their values for individual stocks. The
anomaly IV OL average of 0.027 (in Table 1, Panel B) equals that of a stock in the (lowest) 1st percentile of
the IV OL distribution of all stocks in our sample. In contrast, the anomaly BV OL average of 0.220 equals
that of a stock in the 20th percentile of the BV OL distribution of all stocks in our sample.
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5 Beta uncertainty and expected returns

If substantial beta uncertainty prevents arbitrageurs from forming effective trading strate-

gies, then it is reasonable to conjecture that the degree of beta uncertainty attached to the

anomalies affects future anomaly returns, as follows from equation (5). Ceteris paribus, we

expect anomalies of higher (lower) beta uncertainty to yield higher (lower) future returns.

We first show that the beta levels of anomalies are not associated with future returns whereas

the beta uncertainty as measured by BV OL directly affects anomaly future returns. We

then provide evidence that the return predictability due to beta uncertainty largely stems

from the short leg of the anomalies as is expected from Jones and Lamont (2002) and oth-

ers. In the last part of this section, we provide corroborating parametric evidence using

Fama-MacBeth regressions.

5.1 Decile portfolios formed on market beta and BV OL

We first conduct a portfolio analysis of the predictive power of the market betas on

the returns of the anomalies. At the end of month t, we form decile portfolios based on

the rankings of the market betas of the 207 anomalies. Then, the equal-weighted portfolio

returns for month t + 1 are calculated. The third column of Table 2 reports the sample

average returns of the decile portfolios sorted by beta from low to high. As can be observed,

there is no clear pattern in return across the decile portfolios. The return differential between

the 10th and 1st portfolios is about 0.209% per month, which is statistically insignificant.

The return after adjustment for the Fama-French five factors is positive but insignificant.

This result is consistent with the established empirical consensus that, unconditionally, the

security market line is flat.

Subsequently we conduct a similar portfolio analysis considering the effect of the market

beta uncertainty (BV OL) on the returns of anomalies. At the end of month t, we sort the

anomalies by BV OL and form equal-weighted decile portfolios. The second column of Table
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2 reports the sample average returns of these decile portfolios. There is a general positive

relation between beta uncertainty (BV OL) and portfolio returns. The return differential

between the top and bottom decile portfolios is 0.689% per month with a t-statistic of 6.72,

statistically and economically significant. The abnormal return is similarly economically and

statistically significant at 0.695% per month with t-statistic of 4.96, after risk adjustment

with the Fama-French five-factor model.

Figure 1 illustrates the significance of sorting the anomalies by BV OL. It shows the

cumulative abnormal returns from investing in the top quintile of the anomalies with the

highest BV OL in comparison to the bottom quintile and the three middle quintiles, with

returns adjusted for the five Fama-French risk factors. For the highest quintile of BV OL (rep-

resenting the anomalies with the largest arbitrage barriers resulting from uncertainty about

the systematic risk), the cumulative abnormal anomaly returns reach as high as 1080.4% in

the period from July 1968 through December 2022. In contrast, for the bottom quintile the

cumulative returns are −45.7%, whereas for the middle quintiles the cumulative returns are

51.2%. Evidently, the anomalies only persist for the highest BV OL quintile. It appears that

a high level of beta uncertainty sufficiently impedes arbitrage to preserve initial systematic

pricing errors.

Since only the highest BV OL anomalies generate persistent positive returns, it is inter-

esting to see which type of anomalies this applies to. Considering the anomalies in the top

BV OL decile, first keep in mind that the BV OL values and rankings change over time, so

we select the decile of anomalies with the highest time-series average BV OL. What stands

out is that 9 out of the 20 anomalies in this decile are based on momentum. These anomalies

rely a lot on small growth stocks and also change portfolio composition relatively quickly as

momentum of individual stocks changes over time. Each of these aspects may contribute to

high beta uncertainty. Irrespective of the cause of high BV OL, our theory argues that the

momentum anomalies are so robust and persistent because arbitrage activity is hampered by

the unavoidable and uncertain market risk exposure inherent in the momentum strategies.
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5.2 Beta uncertainty in high versus low sentiment periods

Since every anomaly is a zero-investment strategy, combining a long and a short position,

we may examine separately the long legs and the short legs of the decile portfolios and identify

the contribution from each side. In Table 3, Panel A shows that the return differential

between the tenth and first decile portfolios is −0.465% with a t-stat of −7.45 for the short

legs, while that of the long legs is 0.224% with a t-stat of 3.72. The short side, accordingly,

contributes substantially more to the return differential than the long side, consistent with

the common perception (see, for instance, Stambaugh et al. 2012, 2015; Chu et al. 2020)

that the short side is more sensitive to arbitrage barriers which makes it more costly and

riskier to sell short.

We use the sentiment index from Baker and Wurgler (2006) to divide the full sample

period into high sentiment periods and low sentiment periods, and separately examine the

performance of the decile portfolios of the long-short anomaly portfolios as well as the sep-

arate long and short legs. The differences in sentiment facilitate a look at the interaction

between arbitrage barriers from beta uncertainty and mispricing. Panels B and C of Table 3

provide several results of note.

First, in Table 3 the monthly average returns of all long and short positions in High Sen-

timent periods are considerably lower than those in Low sentiment periods, consistent with

Baker and Wurgler (2006) who show that returns of stocks whose valuations are subjective

and difficult to arbitrage are relatively high when sentiment is low, and relatively low when

sentiment is high. Baker, Wurgler, and Yuan (2012) further find that high investor sentiment

predicts low future returns (and low sentiment predicts high future returns) in global stock

markets.

Second, to digest the variation in anomaly returns for different beta uncertainty levels

and sentiment regimes, consider the anomaly return for the top decile of BV OL which equals

1.160% for High Sentiment and 0.827% for Low Sentiment, and contrast it with the anomaly

return for the bottom decile of BV OL which equals 0.404% for High Sentiment and 0.179%
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for Low Sentiment. Even though general return levels vary with sentiment, these numbers

reveal that the beta uncertainty premium is robust and quite similar across sentiment regimes

at 0.756% (t-stat = 4.18) in High Sentiment periods and 0.647% (t-stat = 5.27) in Low

Sentiment periods, in both cases consistent with ∂w∗
t−1/σ

2
βt−1 < 0 in equation (5).

Third, the long and short legs returns of the anomaly portfolios, nevertheless, vary under

different levels of sentiment. The short leg relative to the long leg contributes about four

times as much to anomaly returns, 0.613% versus 0.142%, in High Sentiment periods, but

barely more, 0.374 versus 0.274, in Low Sentiment periods. These results are in line with

Stambaugh et al. (2012) and Stambaugh et al. (2015). During periods of high sentiment,

stocks are more likely overpriced. Therefore, we should observe stronger results for the

short legs and weaker results for the long legs because far fewer stocks are underpriced. In

contrast, during periods of low sentiment, stocks are more likely underpriced, causing weaker

results for the short legs and stronger results for the long legs. These opposite changes in the

return differential from the short leg and the long leg result in the similar return differential

observed for the long-short portfolio in both High Sentiment and Low Sentiment periods.

The patterns remain consistent whether or not we adjust for risk using the Fama-French

five factors, indicating that non-market systematic risk plays a limited role in explaining

the results. The specific variation in the importance of beta uncertainty across different

sentiment regimes and long versus short positions makes it difficult to imagine alternative

explanations in which beta uncertainty matters as an indicator of systematic risk rather than

as a barrier to arbitrage.

5.3 Fama-MacBeth regressions

We provide further supporting evidence using Fama-MacBeth regressions, which allows

for adding alternative control variables. The baseline Fama-MacBeth regression model is:

RETat = at + btBETAat−1 + ctBV OLat−1 + dtRETat−1 + ηat, (15)
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where RETat and RETat−1 are the returns of anomaly a at time t and t − 1, respectively;

BETAat−1 and BV OLat−1 are the market beta and beta volatility of the anomaly a at

time t − 1. To control for the possible impact of the idiosyncratic volatility (IV OL) of the

anomaly, we add IV OLat−1 as a control variable and report the results side-by-side with

the basic model in Table 4. Columns (1) and (2) report the regression results for the full

sample period. Without the IV OL control, the coefficient of BV OL is 1.008 with a highly

significant t-stat of 10.05, and the market beta is insignificant, consistent with the portfolio

sort results in Table 2. Prior-month anomaly returns have a significant positive coefficient,

which is contrary to the findings for individual stocks (Lehmann, 1990; Jegadeesh, 1990).

However, the result here applies to anomaly portfolios of which the composition changes on

a monthly basis, and it produces the expected persistence of the anomaly returns.

Adding IV OL as a control reduces both the magnitude and the significance of the co-

efficient of BV OL (now 0.736 with a t-stat of 4.65) resulting from the positive correlation

between BV OL and IV OL, with both having a similar impact on future anomaly returns.

IV OL also has a significantly positive coefficient. These results are consistent with the

fact that both beta uncertainty and idiosyncratic volatility are arbitrage barriers per equa-

tion (5). The regression results show that both have distinct effects on future anomaly

returns, supporting our argument that beta uncertainty is related to systematic risk while

IV OL captures idiosyncratic risk.

We again divide the full sample period into subperiods of high sentiment and low sen-

timent using the sentiment index of Baker and Wurgler (2006), and run the regressions

separately for the two subperiods. Columns (3) and (4) of Table 4 report the results for the

high sentiment periods, and columns (5) and (6) reports the results for the low sentiment

periods. Without the control for IV OL, in columns (3) and (5), the results are consistent

with the nonparametric results in Table 3. The BV OL premium in the High Sentiment and

Low Sentiment periods are similar to each other and to that in the Full Period. In addition,

the persistence of the anomaly returns is similar across the sentiment periods.
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Including the control for IV OL in both subsamples in Columns (4) and (6) of Table 4, the

regression results are again similar to those for the full sample period except that the effect

of IV OL appears stronger in the high sentiment periods while the effect of BV OL appears

stronger in the low sentiment periods. An explanation is that the market volatility and

expected return, which magnify BV OL’s effects but diminish IV OL’s effects on anomaly

returns,8 are higher during low sentiment periods (the average monthly volatility and return

of the market excess return are 5.46% and 0.81%, respectively, during Low Sentiment periods

versus 4.56% and 0.28%, respectively, during High Sentiment periods).

A separate interesting result in Table 4 is that the market beta has a negative and

significant coefficient in high sentiment periods, suggesting that positive betting against beta

returns (Jensen, Black, and Scholes, 1972; Fama and MacBeth, 1973; Frazzini and Pedersen,

2014) exist in the anomaly portfolios, although these returns are significant only in periods

when sentiment is high. This directly challenges Boloorforoosh et al. (2020) who argue that

beta uncertainty explains the betting against beta anomaly. This result also departs from

Liu, Stambaugh, and Yuan (2018) who find that the betting against beta anomaly becomes

insignificant once IV OL is controlled for. The discrepancy may arise because we separate

high and low sentiment regimes, whereas Liu et al. (2018) pool these regimes together. In

our analysis, the positive beta coefficient during low sentiment (in Column (4)) offsets the

negative beta coefficient during high sentiment (in Column (6)), which is reflected in the

insignificant beta coefficient in our pooled results in Column (2).

8From Equation (5) it follows that ∂ ln(w∗
t−1)/∂σ

2
mt−1 = (µ2

mt−1 +R)/[σ2
mt−1(σ

2
mt−1 + µ2

mt−1 +R)], and
∂ ln(w∗

t−1)/∂µmt−1 = −1/µmt−1 − 2µmt−1/(σ
2
mt−1 + µ2

mt−1 + R), where R = σ2
at−1/σ

2
βat−1, both of which

depend negatively on σ2
βat−1 (BV OL) and positively on σ2

at−1 (IV OL). So the second partial derivatives,

∂2 ln(w∗
t−1)/∂σ

2
βat−1∂σ

2
mt−1 and ∂2 ln(w∗

t−1)/∂σ
2
βat−1∂µmt−1 are negative, while ∂2 ln(w∗

t−1)/∂σ
2
at−1∂σ

2
mt−1

and ∂2 ln(w∗
t−1)/∂σ

2
at−1∂µmt−1 are positive.
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6 Beta uncertainty and idiosyncratic volatility

The regression results in Table 4 suggest a close relation between BV OL and IV OL and

similar effects on anomaly returns, even though we present a detailed model that explicitly

separates the two. Given the latent nature of these variables, they are likely inherently

correlated, and the estimation procedure may introduce additional correlation. Further, as

both are potential arbitrage barriers, their effects on anomaly returns may derive from a

similar mechanism. Although the regression results in Table 4 indicate that their effects

are distinct, we conduct a more comprehensive analysis in this section to control for IV OL,

allowing in particular for a possible nonlinear relation between BV OL and IV OL.

6.1 Orthogonalization and standardization

Our first analysis in this subsection is to decompose BV OL via regression into compo-

nents that are related to IV OL and a residual that is orthogonal to IV OL and use the

residual in the Fama-MacBeth regressions to test its effect on the anomaly returns. Specifi-

cally, we use the following regression to decompose BV OL,

BV OLit = at + btIV OLit + ctIV OL2
it + εBV OL

it , (16)

We include the squared term of IV OL to capture the possible nonlinear relation between

BV OL and IV OL. Conversely, we decompose IV OL in the same way to obtain the residual

orthogonal to BV OL.

We then regress future anomaly returns on the residuals separately, similar to Table 4, and

report the results in Panel A of Table 5. Observe that the residual of BV OL (orthogonalized)

still has a positive and significant coefficient, indicating a strong positive relation with future

anomaly returns, with or without the presence of IV OL, albeit the IV OL coefficient is also

positive and significant. The opposite holds as well: the orthogonalized residual of IV OL

remains significant and positive, while BV OL is also positively and significantly associated
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with future anomaly returns. These results corroborate the findings in Table 4, and confirm

that the effect of BV OL on future anomaly returns is distinct from that of IV OL.

To compare numerically the magnitudes of the BV OL and IV OL effects, we cross-

sectionally standardize both variables (dividing by their monthly standard deviations across

all anomalies after subtracting the cross-sectional means each month) and regress future

anomaly returns on the two standardized variables. Panel B of Table 5 reports the regression

results, which show again that both variables are positive and significant. However, the

coefficient of BV OL (standardized) is considerably larger and more significant than that of

the standardized IV OL: 0.122 with a t-stat of 4.76 versus 0.084 with a t-stat of 2.85. This

implies that the effect of BV OL on future anomaly returns is quantitatively stronger than

that of IV OL, consistent with the discussion related to equation (6), that, as a result of

the diversification inherent in anomaly positions, BV OL’s magnitude is substantially (about

50%) larger than IV OL’s.

6.2 Double sorting

In this subsection, we employ a double sorting approach to investigate the interactive

effect of beta uncertainty and idiosyncratic volatility on the anomaly returns.

We first conduct dependent double sorting. Specifically, we first sort anomalies into five

quintiles based on IV OL and then within each IV OL quintile, we sort anomalies again into

five quintiles based on BV OL, forming 5× 5 quintile portfolios. Panel A of Table 6 reports,

within each IV OL quintile, the returns of the quintile portfolios and the corresponding

spread portfolio between the fifth and first quintiles of BV OL. We also report the Fama-

French five-factor alphas (FF5 alphas) for the five spread portfolios. In general, the returns

of BV OL quintile portfolios increase with the level of IV OL, and the spread portfolios follow

the same pattern. For example, the FF5 alpha of the BV OL spread portfolio is 0.140% per

month in the first IV OL quintile, less than one-fourth that of the spread portfolio in the

fifth IV OL quintile, which is 0.589%. Nevertheless, all but the second spread portfolios
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have positive and significant average returns and FF5 alphas, and even the FF5 alpha of the

second spread portfolio is significant at the 10% level. Controlling for the effect of IV OL

by taking the averages across the five IV OL quintiles, the spread is 0.268% in return and

0.303% in FF5 alpha, both highly significant. Compared to the single sort results in Table

2, IV OL clearly has an important impact on the predictability of BV OL on future anomaly

returns, although the effect of BV OL remains clearly significant after controlling for IV OL.

In Panel B of Table 6, we conduct similar double sorting controlling for BV OL, instead.

We first sort anomalies into five quintiles based on BV OL, and then form the 5× 5 quintile

portfolios of IV OL. Of the five spread portfolios of IV OL, only two (in quintiles 3 and 4 for

BV OL) are significant; the other three are insignificant. Overall, controlling for the effect

of BV OL by taking the averages across the five BV OL quintiles, the spread is 0.251% in

return and 0.182% in FF5 alpha, both significant but smaller in magnitude than the BV OL

effect controlled for IV OL in Panel A. Figure 2 illustrates how the mean anomaly returns

depend on the order of sorting by BV OL and IV OL: the left panel provides the portfolio

returns when sorting first by IV OL then by BV OL; the right panel when sorting first by

BV OL then by IV OL. This confirms our previous results that the effects of BV OL and

IV OL are intertwined, and that the effect of IV OL is weaker after controlling for the effect

of BV OL.

Table 7 reports the same double sorting strategies but with three-month and six-month

holding periods, respectively. We extend to longer holding periods because the arbitrage-

limiting effect of BV OL lasts likely longer than one month, and one month results can be

noisy. Indeed, Table 7 shows similar results as in Table 6, but they are more significant. All

five spread portfolios of BV OL are highly significant now, although the magnitudes of the

returns are largely unchanged. In contrast, again only two of the five spread portfolios of

IV OL are significant.9

9For completeness, we also perform independent double sorting (results available from the authors), which
yields largely similar results as in Table 6, with a few differences. First, the returns and FF5 alphas of the
BV OL spread portfolios are slightly higher and more significant than for the dependent double sorting.
Second, the IV OL spread portfolio in the highest BV OL quintile now has significant but negative returns.
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7 Longevity of anomalies

Our previous analysis provides evidence that anomalies with more beta uncertainty have

higher near-future returns, and we argue that beta uncertainty is an arbitrage risk (barrier),

preventing correction of mispricing in the anomalies. In this section we examine the anomaly

performance over longer horizons.

On the one hand, McLean and Pontiff (2016) document that anomalies decline out of

sample, especially after publication. They note that anomalies exhibiting higher in-sample

returns attract more capital from arbitrageurs and experience heightened arbitrage activities,

leading to faster decay. Building on their findings, we hypothesize that higher past returns

result in lower returns over longer horizons due to increased arbitrage activities.

On the other hand, because beta uncertainty functions as an arbitrage barrier, we con-

jecture that there will be interactions between beta uncertainty and arbitrage activities

mediated by past returns: we anticipate that beta uncertainty attenuates the diminishing

effect of high past returns on future anomaly returns. This occurs because, when past re-

turns are at a high level where arbitrage activities are prevalent, greater beta uncertainty

imposes more significant constraints on arbitrage activities. Conversely, past returns are

expected to amplify beta uncertainty. When beta uncertainty is high, arbitrageurs have less

incentive to allocate resources if past returns are weak, leading to a weaker marginal impact

of beta uncertainty. Consequently, we anticipate that the interaction term of BV OL and

past returns has a positive coefficient.

We use the following panel regression to test these hypotheses.

CRET i
t+1,t+n = b0 + b1BETA

i

t−m,t−1 + b2BV OL
i

t−m,t−1 + b3IV OL
i

t−m,t−1 + b4CRET i
t−m,t−1

+ b5(BV OL× CRET )it−m,t−1 + b6(IV OL× CRET )it−m,t−1 + γi + λt + ϵit

(17)

where CRET i
t+1,t+n is the cumulative holding period return over n periods starting at month
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t+1, and CRET i
t−m,t−1 is the cumulative measurement period return over m periods ending

at month t− 1. The holding period n ranges from 3 to 36 months; the measuring period for

past return m is either 36 or 60 months. BETA
i

t−m,t−1, BV OL
i

t−m,t−1 , and IV OL
i

t−m,t−1

are the average market beta, BV OL, and IV OL for anomaly i either in the 36- or the

60-month window prior to the formation month t. (BV OL× CRET )it−m,t−1 and (IV OL×

CRET )it−m,t−1 represent the interaction terms between BV OL
i

t−m,t−1 and IV OL
i

t−m,t−1 with

the past cumulative returns CRET i
t−m,t−1.

The regression results are reported in Table 8. First, BV OL is positive but insignificant

in each regression, suggesting that when the past returns are very low, there are no arbitrage

activities to begin with, and thus no beta uncertainty effect. Similarly, IV OL is insignifi-

cant. However, the past return (CRET ) coefficient is always negative and highly significant,

consistent with McLean and Pontiff (2016). This suggests that high past anomaly returns

likely reduce future anomaly returns over horizons from 3 months to 36 months.

Nevertheless, beta uncertainty has a significant modulating effect on the diminishing

effect of past returns, with a positive coefficient suggesting that the greater the beta uncer-

tainty, the smaller the weakening effect of the past returns on future returns. The significantly

positive coefficient on this interaction term suggests that the effect of beta uncertainty is

moderated by past returns as well: the higher the past returns, the stronger the arbitrage-

reducing impact of beta uncertainty on future anomaly returns. Finally, the interaction term

between IV OL and the past returns is always negative but not always significant, implying

again that BV OL and IV OL have distinct effects, here on future returns.

For the overall impact of lagged cumulative anomaly returns on future cumulative anomaly

returns, we can easily compare the original McLean and Pontiff (2016) component (proxied

by the past returns) and the beta uncertainty component in quantitative terms. Focus-

ing on the case of 36 months lagged cumulative returns on 36 months future cumulative

returns in Table 8, we have that the McLean and Pontiff (2016) component is −0.090, signif-

icantly negative as expected, with t-statistic of −3.03, and the beta uncertainty component
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is 0.031× BV OL, significantly positive as expected, with t-statistic of 5.10. The net effect,

if negative, implies anomaly factor mean reversion as in McLean and Pontiff (2016), and,

if positive, implies anomaly factor momentum. The size of the effect of the past returns

depends on the level of beta uncertainty.

As we measure BV OL by the decile rank here, it is straightforward to calculate the quan-

titative impact. For the lowest BV OL deciles, the McLean and Pontiff (2016) component

dominates, yielding mean reversion for these anomalies. For the third-lowest decile, we have

BV OL = 3, which generates a net of zero. Anomalies with BV OL in deciles higher than the

third display momentum. For the anomalies with the largest beta uncertainty, in decile ten,

the net effect is 0.220. This is consistent with our earlier result that (only) anomalies with

the highest beta uncertainty generate persistently high abnormal returns. For the alternative

holding and measurement periods in Table 8, anomaly return momentum occurs for higher

beta uncertainty deciles in all cases, starting anywhere from decile two to decile seven.

8 Firm level evidence and investor arbitrage activity

In the preceding analyses, anomalies with high beta uncertainty are found to have high

future returns. We argue that beta uncertainty represents an arbitrage risk that prolongs

mispricing. Here, we provide further evidence by expanding the testing to the individual

firm level, also allowing us to examine the specific investor arbitrage activity. The premise

is that, if arbitrage risk from beta uncertainty contributes to the persistence of an anomaly,

then one would expect higher beta uncertainty to increase abnormal returns at the micro

level. We also expect firm level beta uncertainty to limit investor arbitrage activity, e.g.

reducing arbitrage trades when arbitrage risk is high.
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8.1 Beta uncertainty enhances firm level mispricing

We perform tests to see if mispricing in individual stocks, rather than portfolios of

anomaly positions, with higher beta uncertainty produces stronger future returns due to

increased arbitrage risk. This is particularly interesting because of the debate to what ex-

tent anomalies reflect mispricing rather than missing risk factors. To this end, we use the

mispricing score (MPS) of Stambaugh et al. (2015), which is a score from 1 to 100 constructed

from 11 anomalies studied in Stambaugh et al. (2012). We subtract 50 so that stocks with

a score higher than 0 are overpriced, and those with a score lower than 0 are underpriced.

We argue that, because beta uncertainty creates additional arbitrage risk limiting arbitrage

activity, mispricing will be worse (on average) for stocks with higher beta uncertainty. To

model this magnifying effect of beta uncertainty on mispricing, we include an interaction

term in the following Fama-MacBeth regression:

RETit+1 = at+btBETAit+ctBV OLit+dtMPSit+gt(MPS ×BV OL)it+h
′

tXit+ϵit+1, (18)

where RET it+1 is the return on stock i in month t+1; MPS is the mispricing score (minus 50)

calculated by Stambaugh et al. (2015). BETA and BV OL are the estimated market beta and

beta volatility for stock i in month t, respectively; (MPS ×BV OL)it is the interaction term

between mispricing and beta uncertainty; Xit is a vector of other control variables for stock

i in month t which includes LSZ (the log of market equity), LBM (the log book-to-market

ratio), RETit (the lagged return), AMD (the stock liquidity measure of Amihud (2002)),

and IV OL. To match the ranking attribute of MPS and help interpret the coefficients of

the interaction terms, the decile ranks of BV OL and IV OL are used in the regression.

Because arbitrage risks are most relevant for overpriced stocks, and our previous results

confirm that the effect of beta uncertainty on anomalies is more prominent for the short

legs, we run separate regressions for overpriced stocks (MPS > 0) and underpriced stocks

(MPS < 0) and report the results in Table 9. Because of the requirements of our estimation,
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demanding a relatively long history (50 years), stocks in our sample are mostly mature and

potentially large.

In the first regressions of Panels A and B, we include BV OL andMPS, ignoring the cross

product. The results confirm those of Stambaugh et al. (2015) as well as those of Armstrong

et al. (2013) and Hollstein et al. (2020). For both the overpriced and underpriced stocks, the

MPS impact is negative and statistically significant, −0.023 with a t-stat of −5.36 in the

overpriced stocks, versus −0.017 with a t-stat of −3.08 in the underpriced stocks. Moreover,

the BV OL coefficient is significantly negative, reproducing the results of Armstrong et al.

(2013) and Hollstein et al. (2020) no matter if stocks are overpriced or underpriced, with

coefficient −0.029 and t-stat of −2.07 for the overpriced stocks and coefficient −0.016 with

t-stat of −1.92 for the underpriced stocks.

We then add the interaction term (MPS ×BV OL) to the second regressions in Pan-

els A and B and find different results between the overpriced and underpriced stocks. For

both the overpriced and underpriced stocks, BV OL is insignificant, different now from Arm-

strong et al. (2013). Crucially, for the overpriced stocks, the interaction term is negative and

significant, consistent with the hypothesis that beta uncertainty is an arbitrage barrier ex-

acerbating the mispricing in overpriced stocks. In contrast, both BV OL and its interaction

with MPS are insignificant for the underpriced stocks, as anticipated: amplified arbitrage

constraints are less relevant when correction of mispricing does not require shortselling.

Lastly, we include IV OL and (MPS × IV OL) to the third regressions in Panels A and

B, as further arbitrage cost measures. While the signs are negative, the coefficients are

insignificant, suggesting again that the beta uncertainty is a quantitatively more important

indicator of arbitrage impediments. In all specifications in Table 9 both size (LSZ) and book-

to-market (LBM) have significant coefficients with the expected signs, indicating that our

sample, although limited, is representative. Further, BETA becomes positive and significant

for the underpriced stocks, but insignificant or marginally significant for the overpriced

stocks, similar in sign to the findings of Liu et al. (2018) who double sort stocks by MPS and
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beta and find beta is positively (but insignificantly) related to future returns for underpriced

stocks.

These results provide empirical evidence against the explanation of the impact of beta

uncertainty in Armstrong et al. (2013) who offer a partial equilibrium model in which a firm’s

expected return decreases in the factor-loading uncertainty because the covariance between

a firm’s cash flows and the pricing kernel, and hence the price of these cash flows, is a convex

function of the firm’s future risk factor loading. In contrast, we argue that beta uncertainty

works as an arbitrage risk and interacts with mispricing to affect future returns only when

shorting the stock is required for arbitrage. Without properly controlling for the interaction

term of beta uncertainty and mispricing as well as the mispricing sign, it appears that beta

uncertainty is negatively related to future returns. However, once we correctly include the

interaction term, the effect of beta uncertainty is no longer negative.

8.2 Beta uncertainty and arbitrage activities

To validate our inference that the impact of beta uncertainty on future anomaly returns

indeed stems from impeding arbitrage, we seek direct evidence that beta uncertainty reduces

investor arbitrage activity. To capture investor arbitrage transactions, we follow Hanson

and Sunderam (2014) and use firm level monthly short interest as a proxy for arbitrageur

positions. Monthly short-selling interest of each firm is defined as the number of shares

shorted divided by the total number of shares outstanding for every month. We focus on

the short-side activity as arbitrage-related for the following reasons: first, the short-selling

data is widely available; second, short-selling involves more constraints and risks (lacking

even a limited liability bound) and is more likely to be initiated by sophisticated investors

(arbitrageurs) who are actively looking for alpha; third, most of the anomaly research shows

that anomaly strategy profits are often generated from the short legs. We use the following
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Fama-MacBeth regression model to test our hypothesis:

SIit+1 = at + btBV OLit + ctIV OLit + d
′

t Xit + ϵit+1, (19)

where the dependent variable SIit+1 is the short-selling interest in month t + 1 for stock

i. Xit is a vector of firm characteristics for stock i in month t as controls, including LSZ,

LBM , past six month of returns RET−6,−1, and the percentage of institutional ownership

IOR. If beta uncertainty indeed discourages arbitrage, we expect the coefficient of BV OLit

to be negative.

Panel A of Table 10 reports the regression results for next period short-selling interest,

SIit+1; Panel B reports the results for the contemporaneous short-selling interest, SIit. As

the two sets of results are very similar, we focus on the results for SIit+1 in Panel A. Column

(1) only includes BV OL and IV OL; Columns (2) and (3) add more control variables. In all

three models, BV OLit is always negative and statistically significant at the 1% level. For

example, the coefficient in Column (3), which includes all controls, is −0.049 (t-stat=−4.96).

Virtually, the same results hold in Panel B. The evidence supports our main argument that

beta uncertainty creates arbitrage barriers and dampens arbitrageur short-selling activities,

both for the same period and for the subsequent period.

In sharp contrast to BV OL, however, IV OL always has a positive and significant co-

efficient. For example, the coefficient of IV OL in Column (3) is 0.197 (t-stat=8.74). The

significantly positive coefficient implies that IV OL is associated with increases in short-

selling activities. This puzzling finding is in line with the idiosyncratic volatility puzzle (Ang

et al., 2006, 2009) in which stocks with high idiosyncratic volatility yield low returns; smart

investors short sell these stocks to profit from this anomaly. IV OL also proxies for the degree

of divergence in investor opinions so that, based on Miller (1977), the high IV OL stocks

become more overpriced, attracting short selling by arbitrageurs.

Overall, Table 10 provides incremental evidence supporting the hypothesis that high beta
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uncertainty increases the barrier to arbitrage, leading to a low level of arbitrage transactions.

8.3 An alternative measure for arbitrage activity

We evaluate the sensitivity of the results to short interest as the proxy for arbitrage

activity by examining an alternative measure of arbitrage activity proposed by Lou and

Polk (2022): co-momentum. Higher co-momentum means that abnormal returns (returns

adjusted for industry and Fama-French three-factor risk) of the winner decile (potentially

underpriced) and the loser decile (potentially overpriced) become more correlated on average.

This signifies more arbitrage activity as increased investment, in the same direction by decile,

occurs with the intent to exploit mispricing, leading to related return movements in these

deciles. Table 11 shows how BV OLt and IV OLt, averaged over the winner and loser deciles,

affect the arbitrage activity, proxied by co-momentum, over time. The results are similar

for the current co-momentum CoMOMt in Panel A and the next-month co-momentum

CoMOMt+1 in Panel B: The average BV OL significantly lowers arbitrage activity and the

average IV OL significantly raises arbitrage activity. These impacts are fully consistent with

Table 10 in which short interest instead of comomentum is used as the proxy of arbitrage

activity. When we add controls for the averages of beta, firm size, and turnover, the BV OL

effect on arbitrage activity remains significant but the IV OL impact becomes insignficicant

for both current and next-month co-momentum.

8.4 Comparison with alternative explanations

Sections 7 and 8 of the paper provide supplementary information on the impact of BV OL

separate from its direct effect on monthly anomaly returns. The supplementary findings are

in all cases consistent with the level of BV OL representing a degree of arbitrage impediment.

An alternative explanation for the importance of BV OL is that it represents factor

risk. Boloorforoosh et al. (2020), in particular, views BV OL as a Merton risk factor. In

the Fama-MacBeth results of section 5.3 BV OL may be viewed as loadings on a factor
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mimicking portfolio of the test assets (the set of anomalies). Regarding BV OL either as

an asset’s attribute or as its risk factor loading is observationally equivalent with respect

to return impact.10 To distinguish a generic systematic risk explanation from our restricted

arbitrage view, only the supplementary results are pertinent.

We find that the impact of cumulative previous returns on anomaly returns in Table 8

is mitigated by BV OL. Explaining this by factor risk would require an elaborate theory of

changes in loadings over time. Similarly, the impact of BV OL in Table 9, as mediated by

asset mispricing, is difficult to explain by loading changes on an aggregate BV OL-mimicking

risk factor. Lastly, under a risk explanation, the return effects from BV OL exposure are

compensation for risk and would not incite arbitrage trading. If arbitrage is not involved,

there are no easy explanations for why the factor loadings relate to either short-selling interest

or co-momentum, as any such explanation is necessary to explain the results in Tables 10

and 11.

The finding that BV OL directly lowers arbitrage activity, as proxied either by short

interest or co-momentum, validates the theory thatBV OL raises anomaly returns specifically

through the arbitrage barrier channel. Anomaly returns increase because higher anomaly

BV OL reduces arbitrage activity, leaving higher anomaly returns. Other theories of a BV OL

impact fail to explain the reduced arbitrage activity and/or are contradicted by the findings:

Miller (1977) may be interpreted as implying a role for BV OL as one of the causes of investor

disagreement. Higher disagreement causes more overpricing, affecting prospective returns,

but this would imply more arbitrage activity by shortsellers, not less. Armstrong et al.

(2013) argues that BV OL implies a positive Jensen’s inequality effect because stock prices

are convex in the stock’s beta. Higer BV OL then implies lower prospective returns, instead

of higher, and, in addition, has no impact on arbitrage activity.

10Fama (1976) points out that the OLS coefficient in the Fama-MacBeth regression equates to the return
on a weighted average portfolio of zero-investment test assets. Balvers and Luo (2018) emphasize the
implication that characteristics and factor loadings cannot be distinguished based on return data because
for every characteristic a factor-mimicking portfolio may be constructed that generates the characteristic of
each asset as its loadings.
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9 Conclusion

We propose that uncertainty surrounding risk loadings – beta uncertainty – serves as a

significant barrier to arbitrage. In a simple market model with uncertainty about market

betas, the demand by investors wishing to take advantage of positions with positive alpha

is dampened because the investors are not able to transport these alphas without incurring

an unpredictable degree of systematic risk. Fully hedging this risk would require offsetting

the uncertain factor loading of the target asset by shorting a portfolio, also with uncertain

factor loading. This difficulty in hedging the systematic risk accompanying positive alpha

positions hinders active investment, thereby reducing arbitrage of the target asset.

In anomaly positions, typically involving a portfolio of many different stocks, arbitrage

risk is diminished due to reduced idiosyncratic risk, which by definition is easily diversifiable.

However, the beta uncertainty becomes relatively more critical because beta fluctuations may

be positively correlated. Arbitrage then becomes precarious because random risk loading

may provide poor returns at a bad time. For portfolios targeting an anomaly, with evident

active investment opportunities, we claim that beta uncertainty enhances anomaly returns

and reduces arbitrage, and that the quantitative impact is stronger than that of a chief

alternative arbitrage barrier, idiosyncratic volatility.

To test the hypotheses involving the impact of beta uncertainty on arbitrage incentives we

focus first on anomaly positions. Empirically, we utilize the 207 long-short anomaly portfolios

compiled by Chen and Zimmermann (2022). Because beta uncertainty and idiosyncratic risk

are correlated and function similarly as arbitrage risks, we propose a Bayesian market model

to explicitly capture beta uncertainty and the idiosyncratic risk of anomaly portfolio returns,

In the model, anomaly beta is stochastic, following an AR(1) process, and idiosyncratic

volatility is stochastic, following a log AR(1) process. Accordingly, two separate random

processes drive the beta uncertainty and idiosyncratic risk.

We find that our measure of beta uncertainty, BV OL, impacts anomaly returns substan-

tially. The anomaly decile with the highest BV OL generates an annualized return of 8.7
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percentage points higher than the decile with the lowest BV OL, even after adjustment with

the five Fama-French risk factors. Only the quintile of anomalies with the highest BV OL

generates significant returns. The impact of BV OL on anomaly returns is stronger and more

robust than that of IV OL.

We know from McLean and Pontiff (2016) that anomaly returns are persistent but decay

more at higher return levels. If BV OL operates as an arbitrage hurdle, a higher uncertainty

level should slow the decay. We expect the BV OL effect on future anomaly returns to

positively depend to the current size of the anomaly returns. The results indeed shows that

the interaction between BV OL and cumulative anomaly returns over the past 3 years (or 5

years) has a significantly positive coefficient for holding periods from 3 months to 3 years.

By itself, past cumulative returns have a negative impact on future returns, suggesting mean

reversion in anomaly returns. But for anomalies with sufficiently high BV OL, the mean

reversion changes to momentum.

To compare against previous literature linking beta uncertainty (as a separate risk factor

or a measure of convexity impact) to asset returns and to obtain a micro perspective on the

arbitrage impediments, we consider also the importance of BV OL for arbitrage of individual

stocks. We use the mispricing measure for each stock, as defined by Stambaugh et al.

(2015), MPS, and find that, for overpriced stocks, the interaction term BV OL × MPS

is significantly negative: the greater the overpricing, the more incentive for arbitrage and

the more critical the cost imposed by beta uncertainty. Without the interaction term, our

results replicate the findings of Armstrong et al. (2013): the BV OL coefficient is significantly

negative (for both overpriced and underpriced samples). However, their explanation that the

stock’s expected return depends negatively on beta uncertainty because the stock price is a

convex function of its beta, does not depend on mispricing. The significance of the BV OL

coefficient should not disappear when we add the interaction terms. The fact that it does,

favors our arbitrage-barrier explanation.

To produce separate, and more direct, evidence validating BV OL as an arbitrage barrier,
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we employ proxies for arbitrage activity and examine if they are indeed affected by BV OL.

We utilize short interest and comomentum as indicators for the level of arbitrage in a stock,

obtaining similar results in both cases: higher BV OL significantly and negatively impacts

short interest as well as comomentum, thus pinpointing restricted arbitrage by both of these

measures. These findings provide a tangible indication that the impact of BV OL on anomaly

returns works indeed through the channel of arbitrage deterrence.

In summary, beta uncertainty is theoretically a significant hurdle for arbitrage and ex-

pected to have a quantitatively more important impact than idiosyncratic volatility in de-

termining anomaly returns. Given a measure of beta uncertainty that accounts for time

variation as well as estimation risk in market betas, we find that indeed anomaly returns

vary economically and statistically significantly with beta uncertainty and more so than with

the idiosyncratic risk of the anomalies. At the individual stock level we obtain correspond-

ing results for the impact of beta uncertainty on mispricing and returns, and also provide

evidence that beta uncertainty directly reduces arbitrage activity.
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Figure 1: Cumulative abnormal returns from risk-adjusted anomalies sorted by BVOL
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Figure 2: Mean returns of anomaly portfolios sorted by BVOL and IVOL
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Table 1: Summary Statistics of Anomaly Portfolios

In this table, we report the summary statistics of the anomaly monthly returns (RET ) in percentage
terms, the market β (BETA), the volatility of β (BV OL), and the idiosyncratic volatility of returns
(IV OL) in Panel A. We first compute the time-series averages of the variables for each anomaly, and
then compute the summary statistics across all the anomalies. Panel B presents the distribution
of the t-statistics of the market β across the anomalies. A total of 207 anomalies are included and
the sample period is from January 1946 to December 2022.

Panel A: Anomaly Market Betas

t-value Count Average BETA

t > 2 56 0.145

|t|< 2 7 −0.002

t < −2 144 −0.157

Panel B: Summary Statistics

Mean Std Dev Median Min Max

RET (%) 0.453 0.465 0.375 -0.488 4.120

BETA -0.070 0.219 -0.052 -0.735 1.211

BV OL 0.220 0.153 0.186 0.020 0.982

IV OL 0.027 0.015 0.024 0.007 0.123
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Table 2: Beta Volatility and Market Beta Sorted Decile Portfolios

At the end of each month, we sort 207 anomaly portfolios to form equal-weighted decile portfolios
based on ranking by beta volatility (BV OL) and market beta (BETA), respectively. We report
the time-series average return for each decile portfolio and the high-low (10− 1) portfolio. We also
report the Fama-French five-factor model (FF5) risk-adjusted returns. Newey and West (1987)
robust t-statistics are in parentheses and significance at the 1%, 5%, and 10% levels is denoted by
***, **, and *, respectively. The sample period is from February 1948 to December 2022.

Rank BV OL BETA

1 0.265 0.427
2 0.339 0.544
3 0.255 0.409
4 0.383 0.525
5 0.484 0.531
6 0.596 0.516
7 0.630 0.446
8 0.455 0.436
9 0.618 0.505
10 0.954 0.636

10− 1 0.689 0.209
(6.72)*** (0.89)

FF5 0.695 0.063
(4.96)*** (0.41)

51



T
a
b
le

3
:
L
on

g
ve
rs
u
s
S
h
or
t
L
eg
s
an

d
H
ig
h
ve
rs
u
s
L
ow

S
en
ti
m
en
t

A
t
th
e
en

d
of

ea
ch

m
on

th
,
w
e
se
p
ar
at
el
y
p
re
se
n
t
th
e
lo
n
g
an

d
sh
or
t
le
g
re
tu
rn
s
of

th
e
20

7
an

om
al
y
p
or
tf
ol
io
s
so
rt
ed

in
to

eq
u
al
-w

ei
gh

te
d

d
ec
il
e
p
or
tf
o
li
os

b
y
th
e
ra
n
k
in
g
s
o
f
b
et
a
vo
la
ti
li
ty

(B
V
O
L
).

W
e
re
p
or
t
th
e
ti
m
e-
se
ri
es

av
er
ag

e
re
tu
rn

fo
r
ea
ch

d
ec
il
e
p
or
tf
ol
io

an
d
th
e

h
ig
h
-l
ow

(1
0
−

1)
p
or
tf
o
li
o
re
tu
rn

in
th
e
fu
ll
sa
m
p
le

p
er
io
d
an

d
in

p
er
io
d
s
of

h
ig
h
(l
ow

)
se
n
ti
m
en
t,

w
h
ic
h
is

fr
om

B
ak
er

an
d
W
u
rg
le
r

(2
0
06

)
(B

W
).
A

m
on

th
is
ca
te
go

ri
ze
d
as

h
ig
h
(l
ow

)
se
n
ti
m
en
t
if
th
e
se
n
ti
m
en
t
in
d
ex

is
ab

ov
e
(b
el
ow

)
th
e
m
ed

ia
n
va
lu
e.

N
ew

ey
an

d
W
es
t

(1
9
87

)
ro
b
u
st

t-
st
at
is
ti
cs

ar
e
in

p
ar
en
th
es
es

an
d
si
gn

ifi
ca
n
ce

at
th
e
1%

,
5%

,
an

d
10

%
le
ve
ls

is
in
d
ic
at
ed

b
y
**

*,
**

,
an

d
*,

re
sp
ec
ti
ve
ly
.

T
h
e
sa
m
p
le

p
er
io
d
is

fr
o
m

F
eb

ru
ar
y
19

4
8
to

D
ec
em

b
er

20
22

fo
r
th
e
fu
ll
sa
m
p
le

p
er
io
d
in

P
an

el
A
;
th
e
B
W

in
d
ex

is
av
ai
la
b
le

fr
om

J
u
ly

1
96

5
to

J
u
n
e
20

2
2
in

P
an

el
s
B

a
n
d
C
.

P
a
n
e
l
A
:
F
u
ll

P
e
ri
o
d

P
a
n
e
l
B
:
H
ig
h

S
e
n
ti
m
e
n
t

P
a
n
e
l
C
:
L
o
w

S
e
n
ti
m
e
n
t

R
a
n
k

L
on

g-
S
h
or
t

S
h
o
rt

L
on

g
L
on

g-
S
h
or
t

S
h
or
t

L
on

g
L
on

g-
S
h
or
t

S
h
or
t

L
on

g

1
0
.2
65

0
.9
70

1.
23

5
0.
40

4
0.
52

1
0.
92

5
0.
17

9
1.
24

6
1.
42

5
2

0
.3
39

0
.9
84

1.
32

4
0.
40

2
0.
62

9
1.
03

1
0.
30

1
1.
20

2
1.
50

3
3

0
.2
55

0
.9
76

1.
23

1
0.
37

9
0.
60

9
0.
98

7
0.
18

0
1.
20

0
1.
38

0
4

0
.3
83

0
.9
12

1.
29

5
0.
45

6
0.
53

8
0.
99

4
0.
33

8
1.
14

1
1.
47

9
5

0
.4
84

0
.8
50

1.
33

4
0.
57

7
0.
49

8
1.
07

4
0.
42

8
1.
06

5
1.
49

3
6

0
.5
96

0
.7
46

1.
34

1
0.
82

8
0.
35

2
1.
18

0
0.
45

9
0.
97

8
1.
43

7
7

0
.6
30

0
.7
16

1.
34

6
0.
95

5
0.
20

2
1.
15

7
0.
43

1
1.
03

0
1.
46

1
8

0
.4
55

0
.8
53

1.
30

8
0.
67

2
0.
40

6
1.
07

9
0.
32

2
1.
12

7
1.
44

8
9

0
.6
18

0
.7
12

1.
33

0
0.
62

9
0.
35

1
0.
98

0
0.
61

1
0.
93

2
1.
54

3
10

0
.9
54

0
.5
05

1.
45

9
1.
16

0
-0
.0
92

1.
06

8
0.
82

7
0.
87

2
1.
69

9

10
−
1

0
.6
8
9

-0
.4
6
5

0.
22

4
0.
75

6
-0
.6
13

0.
14

2
0.
64

7
-0
.3
74

0.
27

4
(6
.7
2)
**

*
(-
7.
45

)*
*
*

(3
.7
2)
**

*
(4
.1
8)
**

*
(-
5.
32

)*
**

(1
.4
0)

(5
.2
7)
**

*
(-
5.
23

)*
**

(3
.6
8)
**

*

F
F
5

0
.6
9
5

-0
.4
71

0.
22

4
0.
70

5
-0
.5
11

0.
19

4
0.
68

0
-0
.4
33

0.
24

7
(4
.9
6)
**

*
(-
5.
86

)*
*
*

(2
.9
1)
**

*
(3
.0
9)
**

*
(-
3.
84

)*
**

(1
.6
8)
*

(4
.0
9)
**

*
(-
4.
89

)*
**

(2
.4
1)
**

52



Table 4: Fama-MacBeth Regression: Beta Volatility and Idiosyncratic Volatility

We report the Fama-MacBeth regression results based on the following basic model:

RETat = at + btBETAat−1 + ctBV OLat−1 + dtRET at−1 + ηat,

where RETat and RETat−1 are the returns of the anomaly long-short portfolio a at time t and t−1,
respectively; BETAat−1 and BV OLat−1 are the market beta and beta volatility of the anomaly a
at time t− 1. To control for the impact of the idiosyncratic volatility (IV OLat−1) of the anomaly,
we also include IV OL as an additional control variable and report the results side-by-side with the
basic model. The sentiment index is from Baker and Wurgler (2006), and a median value is used
to separate the whole sample period into the high/low sentiment sub-sample periods. Newey and
West (1987) robust t-statistics are in parentheses and significance at the 1%, 5%, and 10% levels
is indicated by ***, **, and *, respectively. There are a total of 207 anomalies included in the
regression. The sample period is from February 1948 to December 2022 for the full sample period;
the BW index is available from July 1965 to June 2022.

Full Period High Sentiment Low Sentiment

(1) (2) (3) (4) (5) (6)

BETA -0.110 -0.119 -0.756∗∗ -0.768∗∗ 0.514∗ 0.492
(-0.61) (-0.66) (-2.45) (-2.48) (1.71) (1.64)

BV OL 1.008∗∗∗ 0.736∗∗∗ 0.910∗∗∗ 0.483∗ 0.950∗∗∗ 0.609∗∗

(10.05) (4.65) (5.55) (1.80) (5.60) (2.48)

IV OL 4.703∗∗∗ 7.076∗∗ 5.800∗∗

(2.71) (2.17) (2.48)

RET−1 0.115∗∗∗ 0.118∗∗∗ 0.138∗∗∗ 0.138∗∗∗ 0.128∗∗∗ 0.131∗∗∗

(8.60) (8.98) (6.24) (6.22) (5.93) (6.31)

Intercept 0.115∗∗∗ 0.0412 0.217∗∗∗ 0.109∗ 0.126∗∗∗ 0.0378
(3.78) (1.24) (4.57) (1.87) (2.70) (0.76)

Adj. R2 0.288 0.306 0.276 0.295 0.279 0.299
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Table 5: Beta Volatility, Idiosyncratic Volatility, and Anomaly Strength: Orthogonalization
and Standardization

In Panel A, we first run the following cross-sectional regression each month:

BVOLat = at + btIVOLat + ctIVOL2
at + εBV OL

at ,

and the residuals εBV OL
at are labeled as the orthogonalized BV OL (Orth. BV OL). We then use

Orth. BV OL in the Fama-MacBeth regression for the anomaly long-short portfolio returns similar
to the ones in Table 4. We use the same approach to orthogonalize IV OL against BV OL. The
results of the regressions are reported in Panel A. In Panel B, we first standardize the estimated
BV OL and IV OL, dividing by their monthly standard deviation across all anomalies, then run
the Fama-MacBeth regression. Newey and West (1987) robust t-statistics are in parentheses and
significance at the 1%, 5%, and 10% levels is indicated by ***, **, and *, respectively. A total of
207 anomalies is included in the regression. The sample period is from February 1948 to December
2022.

Panel A: Orthogonalized BV OL and IV OL

Intercept RET−1 BETA Orth. BV OL IV OL

0.399 0.142 -0.149 0.723
(15.14)*** (8.95)*** (-0.66) (3.95)***

0.103 0.138 -0.186 0.726 10.929
(2.96)*** (8.85)*** (-0.81) (3.96)*** (9.84)***

Intercept RET−1 BETA BV OL Orth.IV OL

0.393 0.145 -0.196 6.458
(14.88)*** (9.19)*** (-0.85) (3.96)***

0.175 0.137 -0.196 0.931 6.356
(5.23)*** (8.80)*** (-0.85) (7.92)*** (3.87)***

Panel B: Standardized BV OL and IV OL

Intercept RET−1 Std BETA Std. BV OL Std. IV OL

0.413 0.114 -0.023 0.122 0.084
(15.61)*** (8.52)*** (-0.43) (4.76)*** (2.85)***
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Table 7: Double Sorting: Extended Holding Periods

Similar to Table 6, at the end of each month, we first sort anomaly portfolios into quintiles based on
idiosyncratic volatility (beta volatility) and then within each quintile, we further sort the anomalies
into quintiles based on beta volatility (idiosyncratic volatility), which results in 5×5 = 25 portfolios.
We report the equal-weighted average returns and the Fama-French five-factor model (FF5) risk-
adjusted returns of the high-low portfolios for 3- and 6-month holding periods, respectively. We
follow Jegadeesh and Titman (1993) to form portfolios with longer holding periods. Newey and
West (1987) robust t-statistics are in parentheses and significance at the 1%, 5%, and 10% levels
is denoted by ***, **, and *, respectively. There are a total of 207 anomalies included in the
regression. The sample period is from February 1948 to December 2022.

Panel A: Control for IV OL Panel B: Control for BV OL

BV OL IV OL

3 months 6 months 3 months 6 months

Rank High-Low FF5 High-Low FF5 High-Low FF5 High-Low FF5

1 0.198 0.165 0.230 0.208 0.055 -0.071 0.085 -0.047
(5.37)*** (4.18)*** (6.51)*** (5.24)*** (0.74) (-0.89) (1.18) (-0.62)

2 0.155 0.158 0.148 0.143 0.067 -0.043 0.054 -0.056
(2.96)*** (2.41)** (3.03)*** (2.42)** (0.75) (-0.44) (0.61) (-0.58)

3 0.163 0.214 0.164 0.195 0.428 0.252 0.426 0.284
(2.33)** (2.47)** (2.65)*** (2.79)*** (4.67)*** (2.03)** (4.93)*** (2.40)**

4 0.357 0.397 0.397 0.457 0.594 0.593 0.577 0.533
(3.44)*** (3.72)*** (4.02)*** (4.57)*** (6.46)*** (5.91)*** (6.59)*** (5.44)***

5 0.595 0.738 0.586 0.738 0.061 0.094 -0.003 0.039
(3.42)*** (3.71)*** (3.42)*** (3.70)*** (0.64) (0.87) (-0.03) (0.39)
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Table 9: Firm Level Evidence: Anomaly Enhancement by Beta Volatility

This table reports the Fama-MacBeth regression results of individual stock returns in month t+ 1
on firm characteristics and a composite anomaly index in month t using the following model:

RETit+1 = at + btBETAit + ctBV OLit + dtMPSit + gt(MPS ×BV OLit) + h
′
tXt + ϵit+1,

where RET it+1 is the return on stock i in month t + 1; MPS represent the mispricing scores
calculated by Stambaugh et al. (2015) minus 50, so that MPS > 0 indicates overpricing and
MPS < 0 underpricing. BETA and BV OL are the estimated market beta and beta volatility for
stock i in month t, respectively; MPS ×BV OL is the interaction term between mispricing and
beta uncertainty; Xit is a vector of other control variables for stock i in month t including LSZit,
LBMit, RETit, AMDit (the stock liquidity measure of Amihud (2002)), and IV OLit. To match
the ranking nature of MPSit and help interpret the coefficients of the interaction terms, the decile
ranks of BV OL and IV OL are used in the regression. We divide the sample into subsamples with
overvalued stocks (MPS > 0) and undervalued stocks (MPS < 0), and report the regressions
in Panels A and B, respectively. Newey and West (1987) robust t-statistics with 6 lagged terms
are in parentheses and significance at the 1%, 5%, and 10% levels is denoted by ***, **, and *,
respectively. Given the availability of MPS by Stambaugh et al. (2015), the firm level data sample
period is from July 1965 to December 2016.

Panel A: Overvalued Sample Panel B: Undervalued Sample
(MPS > 0) (MPS < 0)

Intercept 0.027 0.027 0.027 0.020 0.029 0.021
(5.80)*** (5.79)*** (5.79)*** (4.33)*** (5.15)*** (4.54)***

LSZ -0.133 -0.136 -0.148 -0.104 -0.105 -0.106
(-4.14)*** (-4.15)*** (-4.91)*** (-3.19)*** (-3.34)*** (-3.50)***

LBM 0.247 0.243 0.243 0.178 0.179 0.182
(2.10)** (2.07)** (2.09)** (1.87)* (1.87)* (1.90)*

AMD -0.084 -0.086 -0.087 0.033 0.028 0.032
(-1.42) (-1.45) (-1.49) (0.84) (0.73) (0.79)

RET−1 -0.050 -0.050 -0.052 -0.053 -0.054 -0.054
(-6.88)*** (-6.98)*** (-7.19)*** (-9.64)*** (-9.67)*** (-9.69)***

MPS -0.023 0.002 0.012 -0.017 -0.018 -0.015
(-5.36)*** (0.29) (1.28) (-3.08)*** (-2.89)*** (-2.02)**

BETA 0.268 0.281 0.386 0.406 0.410 0.430
(1.12) (1.16) (1.78)* (2.00)** (2.02)** (2.28)**

BV OL -0.029 0.021 0.013 -0.016 -0.010 -0.005
(-2.07)** (1.16) (0.73) (-1.92)* (-0.95) (-0.33)

MPS ×BV OL -0.004 -0.004 0.000 0.001
(-3.10)*** (-2.34)** (0.22) (0.74)

IV OL -0.014 -0.022
(-0.53) (-0.92)

MPS × IV OL -0.002 -0.001
(-0.79) (-0.86)
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Table 10: Beta Uncertainty and Arbitrage Activities

Fama-MacBeth cross-sectional regression results for:

SIit+1 = at + btBV OLit + ctIV OLit + d
′
t Xit + ϵit+1,

where dependable variable SIit+1 ( SIit) is the short interest in month t+1 (t) for stock i. BV OLit

and IV OLit are the decile ranks based on the estimated beta uncertainty and idiosyncratic volatil-
ity for stock i in month t, respectively; Xit is a vector of other firm characteristic variables for
stock i in month t including LSZit, LBMit, the past six month of returns RETit(−6,−1), and the
percentage institutional ownership IORit. Panels A and B report the results for the contempora-
neous and future arbitrage activities SI, respectively. Newey and West (1987) robust t-statistics
are in parentheses and significance at the 1%, 5%, and 10% levels is denoted by ***, **, and *,
respectively. The sample period is from Jan 1973 to December 2022.

Panel A: SIit Panel B: SIit+1

Intercept 0.009 0.011 -0.008 0.009 0.011 -0.008
(10.81)*** (8.80)*** (-4.07)*** (10.65)*** (8.66)*** (-4.04)***

LSZ -0.006 -0.006 -0.006 -0.006
(-7.49)*** (-7.66)*** (-7.88)*** (-8.00)***

LBM × 100 -0.006 0.3017 -0.003 0.3014
(-0.11) (4.67)*** (-0.05) (4.68)***

RET−6,−1 -0.003 -0.003 -0.003 -0.004
(-2.65)*** (-2.74)*** (-3.01)*** (-3.17)***

AMD × 100 -0.085 -0.097
(-9.73)*** (-8.91)***

IOR 0.027 0.027
(7.26)*** (7.14)***

BETA 0.002 0.002
(3.77)*** (3.47)***

BV OL× 100 -0.032 -0.040 -0.049 -0.031 -0.039 -0.049
(-4.44)*** (-4.91)*** (-4.96)*** (-4.21)*** (-4.74)*** (-4.82)***

IV OL× 100 0.208 0.177 0.197 0.210 0.181 0.201
(9.56)*** (9.03)*** (8.74)*** (9.73)*** (9.18)*** (8.87)***

59



Table 11: Beta Uncertainty and Arbitrage Activities Proxied by Co-Momentum

The table reports the time series regression results based on this model:

CoMOMt+1 = at + btBV OLt + ctIV OLt + d
′
t Xt + ϵt+1,

where dependant variable CoMOMt+1 (CoMOMt) is the comomentum measure, a proxy for arbi-
trage activity introduced by Lou and Polk (2022), in month t+1 (t). To obtain CoMOM , we follow
Lou and Polk (2022) by adjusting each stock’s daily return for its corresponding Fama-French 38
industry daily return and then by the Fama-French three-factor model each month. Stocks are
sorted by the past six month of returns RET−6,−1. The average pairwise Pearson correlation
for loser and winner decile are then calculated each month based on the daily adjusted returns.
CoMOM is the average of the two average pairwise Pearson correlations for the loser and winner
decile portfolios. Similar to CoMOM , we take BV OLt and IV OLt as the average estimated beta
uncertainty and idiosyncratic volatility in month t for both winner and loser portfolios. Xt is a
vector of other average firm characteristic variables for both winner and loser portfolios in month t,
namely BETAt, LSZt, and TRNOV t. Panels A and B report the results for the contemporaneous
and future arbitrage activities CoMOM , respectively. Newey and West (1987) robust t-statistics
are in parentheses and significance at the 1%, 5%, and 10% levels is denoted by ***, **, and *,
respectively. The sample period is from Jan 1965 to December 2022.

Panel A: CoMOMt Panel B: CoMOMt+1

Intercept 0.007 0.011 0.008 0.016
(1.16) (1.50) (1.28) (2.19)**

BETA 0.003 0.001
(0.79) (0.33)

BV OL -0.024 -0.017 -0.025 -0.017
(-3.26)*** (-2.54)** (-3.30)*** (-2.67)***

IV OL 0.144 0.003 0.143 -0.025
(2.80)*** (0.08) (2.60)*** (-0.81)

LSZ 0.073 0.070
(4.58)*** (4.29)***

TRNOV 0.099 0.151
(1.18) (1.93)*
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